
20
May/
June
2013

Walk around the QA and testing
departments of most enterprises
with large or critical IT systems

and you’re almost certain to find HP Quality
Center screens on more than a few desktops.
With a majority share of the market,
whether you love or hate it, Quality Center
has become the tool of choice for large
organizations to manage their QA processes
as part of their strategy for application
modernization.

With such ubiquity you would be
forgiven for assuming that Test Automation
would be a baked-in, part of the standard
solution. But that’s where we enter the
twilight zone – a dimly lit world at the
edges of Quality Center’s boundaries, where

automation is often mentioned but seldom seen. To
be fair to Quality Center, test automation is hard, with
complexity that escalates rapidly in the face of the vast
and disparate universe of modern and legacy systems,
devices, user interfaces etc. The best that an off the shelf
product can realistically offer is hooks as an entry point
for managing test automation: a docking module to the
outside world that enlightened customers will figure out
how to use. And that’s exactly what Quality Center offers,
and has done since at least Test Director 8.0.

With such facilities available, you’d expect that on our
imagined walkabout through Big Corporate QA, we would
see very few of those Quality Center screens involved in
manual testing activities. Sadly, that’s not the case at present.
Despite its widespread use, surprisingly few Quality Center
installations take full advantage of that docking module to
reap the full benefits of test automation.

Is this really a problem?
Whether you have a Quality Center automation gap

or not will depend very much on the type of applications
you are testing. If your testing revolves solely around
interacting with and validating a standalone browser
application, or a Windows GUI application at a PC, then
you’re already well served with automation tools. You can
skip the rest of this article and get back to your day job.

Still reading? Don’t be discouraged, you’re amongst
friends, a sizable community whose enterprise application
testing needs don’t fit such simple, one dimensional
solutions. Even those cases where an application has a
natural screen based user interface, chances are that the
real work is being done by all manner of middleware and

back-end interfaces, silently going about their business
of exchanging messages and updating databases. The
NonStop community will recognize this problem more
than most, with its widespread deployments of ATM
and POS systems, financial interchanges such as SWIFT
and ISO 8583, mobile banking systems using SOAP
messaging, cell phone switches using ASN.1, stock
exchanges etc. All of these are large, message based,
transactional applications where the system’s real business
value passes through internal, headless interfaces that are
difficult to integrate with a Quality Center world.

With no window or HTTP form for a client side testing
tool to hook into, message based applications don’t fall
into the group that can easily be tested by tools such as
HP’s Load Runner or Quick Test Professional. There may
be tools to help with the testing of such interfaces, but not
all integrate with Quality Center, and even fewer support
heterogeneous tests involving a mix of steps across different
devices or interfaces. Without a comprehensive level of
integration and support, device and message based interfaces
become relegated into the “too hard” category, adding to the
already longer than desirable queue for manual testing and
verification. Quality Center, for all its capabilities, ends up as
little more than a structured documentation tool for some of
the most vital interfaces and valuable transactions within an
organization’s IT systems.

There are, for sure, a number of areas where manual
testing is still the most effective approach. And HP, with
its Sprinter tool, offers ways to better support those
remaining manual test cases. But should we fall back on
that so easily for device and messaging interfaces? The
truth is that with their well defined and precisely specified
operations, these interfaces are just as worthy candidates
for test automation as GUIs and web pages, even if they
are somewhat trickier to connect into. And because
they are critical interfaces to our business, we should be
looking to manage and automate that testing through
the same, well established and proven Quality Center
processes that we use for our other areas of testing. We
simply aren’t doing our job as testing professionals if we
leave these languishing in that hard-to-automate bin.

Getting down to the bare metal
By now, hopefully most readers will have been

persuaded that test automation for applications with
headless and legacy interfaces is both desirable and if
not easy, at least possible. Which takes us on to the next
problem - How?

New users of Quality Center quickly become familiar

The State of Automation
Going beyond the easy stuff with Quality Center

Rob Walker
Managing Partner
Ascert, LLC

Rob is a Managing Partner
at Ascert LLC, based in Cape
Town, South Africa. He has
worked with NonStop for
almost 30 years, starting
in the financial industry
and later specialising in
the testing products sector.
In 1997 he joined SoftSell
Business Systems, which
later became Ascert, and was
instrumental in extending the
testing product range from
it's original NonStop heritage
to an open toolset supporting
testing of any hardware and
software platform.

The
Connection 21

www.connect-community.org

with the New Test button in the Test Plan module, where
as well as naming the test the user will select what Test
Type it is. The test type chosen is the hook for automation
(or not, in the case of the MANUAL test type) – it tells
Quality Center which docking module to use to reach the
outside world. Chapter 20 of the ALM 11.0 User Guide
has a table listing available test types, some of which
integrate with HP’s other testing tools:

•	 LR-SCENARIO – will use HP Load Runner as the
testing engine

•	 QAINSPECT_TEST – will use HP QAInspect as
the testing engine

•	 QUICKTEST_TEST – will use HP QuickTest
Professional as the testing engine

•	 SERVICE-TEST – will use HP Service Test as the
testing engine

The automation capabilities and limitations of these
tools are already well covered on the web, so we won’t
review them here. But before considering these cases as
“problem solved” in terms of automation, there are a couple
of points that should be noted:

•	 A Design Test can only have one Test Type - if a test
has steps that need actions across multiple different
tools, automation becomes a lot less straightforward.

•	 The model used by most of these tools is to hold the
actual test definition in their own internal format,
typically via the Test Script tab or as an attachment
to the test. This disconnects the automated definition
of what the test does from the Description and Test
Steps fields within Quality Center. That’s not ideal
if you want to be sure the test actions performed
automatically are actually the same as those the
Quality Center description says should be executed.

These issues sound relatively minor at first, but their
impact on real-world tests are too frequent and damaging
to be considered boundary cases. Take, for example, the
actions involved in a typical cash machine transaction:

1.	 request a cash withdrawal at an ATM device
2.	 look for an associated authorization request at the

host interface or card interchange and respond back
3.	 look for the correct response arriving at the ATM
4.	 finally go check a green screen or GUI and make

sure the transaction reflects correctly in the
balance and logs

Even this most basic transaction needs us to hook into
three different tools, even though only one test type can be
allocated and the associated tool most likely needs it’s own
separate test definition in an external and proprietary format.

Beyond standard, single tool test automation
All is not lost though, that list of Quality Center test

types has some extra tricks up its sleeve to help us:
•	 VAPI-XP – a powerful, do-anything-you-like test type

with support for an automation script in Microsoft
VBScript, Javascript, PerlScript, and PythonScript.

•	 Custom Test Types – a published Quality Center
API open to anyone to create their own custom

test type. Such custom test types are first class
citizens in the Quality Center world, sitting
alongside and with equal power as those supplied
for HP and other testing tools.

There is a lot of good documentation on VAPI-XP,
the current versions of which can be found in Chapter
27 of the ALM 11.0 User Guide. We won’t repeat the
information here, except to point out some noteworthy
behaviors that are common to all flavors of VAPI-XP:

•	 They create an external test script, which although
viewable and editable in the Test Script tab is
actually held in a separate repository of flat files on
the QC server. The script file is local to every test
created – if you want a common automation script
across tests you must create your own mechanism
to duplicate a template script into every test, and a
way to update all copies when the script changes.

•	 There is only one test script file. When you do a
Run Test on such a test type, the entire script will be
run once, regardless of whether the Quality Center
test has actually been broken down into separate
test steps. There is no concept of multiple entry
points for the individual steps of a test.

These pose some challenges to VAPI-XP as a
candidate for creating a generic “test automator”. Don’t be
discouraged though. They can be worked around, and as
a place to start exploring better test automation, VAPI-XP
is both powerful and quick to get started with. One of the
first full automation rigs created by Ascert for a customer
in 2004 used a combination of VAPI-XP, Javascript, and
VersaTest running on remote machines. Despite having
a rather cumbersome infrastructure, it worked well and
provided a high degree of automation.

The documentation on Custom Test Types is a little less
comprehensive. Technical documentation and examples
on packaging and creating them is there, but high level
documentation on how all the pieces fit together is a little
sparse. This is a shame, because despite being a tricky
feature from a programming perspective, once you have
it mastered it offers the most powerful approach currently
available for test automation within Quality Center.
Whereas it’s possible to do most things in VAPI-XP, Custom
Test Types provide the ability to package them up in a much
simpler form for the user e.g. meaningful test type names
and icons, custom panels for configuration, viewing etc.

The screenshot below shows how a Custom Test
Type’s configuration panel is seamlessly integrated with
the standard Quality Center user interface, in this case
providing an easy way for users to select which servers and
environments are to be used for executing automated tests.

Before we move on from APIs to automation models
we must answer a question that will be troubling observant
readers. Why haven’t we discussed the REST API,
introduced by HP in ALM 11 and significantly expanded
in ALM 11.5? The answer is that at present, it doesn’t offer
advances for automation of tests from within Quality

▶

22
May/
June
2013

Center. That’s not a criticism of HPs enhancements.
Support for an open, XML based API is a welcome step
that provides a cleaner and less platform specific way to
access the Quality Center repository. But it isn’t yet clear
how HP intends to provide a similarly platform neutral API
for the Run Test Set functionality needed to execute tests
from within Quality Center’s own user interface. An open
approach to replace this functionality certainly won’t be able
to use the current model, which relies on launching agent
programs on local or remote Windows based machines
using ActiveX and Remote DCOM wiring. Until then,
VAPI-XP or Custom Test Types are our best bet.

Towards a unified automation model
Although slightly different under the hood, both VAPI-

XP and Custom Test Types provide a pathway towards
a truly automated test environment within Quality
Center. Both approaches provide a way to invoke custom
automation code when a user clicks Run Test Set, and both
allow automation code to use the Open Test API (OTA for
short) to access the entity model within Quality Center, in
particular the tests and test steps defining the actions to be
performed.

That last part is so important to an effective automation
model, we’ll say it again – “automation code can access
Quality Center tests and test steps to decide what to do”.
Why re-invent the wheel and hold a separate and external
automation script when Quality Center already has
standard database fields that can hold it for us? Quality
Center’s model may not mirror how everyone thinks
about testing, but it is sufficiently malleable that it can be
made to fit most concepts of structured test organization.
Using this model directly is such obvious best practice that
it’s a shame so few of the testing tools that do integrate
with Quality Center follow this model.

By using standard Quality Center fields to store our
automation description, we are forced to adopt a language
that can be stored in text based fields. Rather than being
an extra chore, this turns out to be a very good thing.
Doing so creates an action definition that as well as being
automatable, is also highly readable, as shown in the

following simplified example:

action := send
type := cash_withdrawal_request
amount := 50.00
card := 4929 1234 0000 5678

The automation code invoked by VAPI-XP or within
the Custom Test Type uses OTA to read definitions such as
the above for each step, parses them, performs the required
actions, and returns the results including supplementary
logs and application files back into Quality Center.

We’re now very close to our goal of a unified automation
model, but there is still one problem remaining – how to
handle test steps needing action at different interfaces. With
all the pieces we now have in place, achieving this is easier
than you might think. All that is missing is a qualifier telling
our automation code the interface or tool that each test step
involves, as highlighted below:

interface := ATM
action := send
type := cash_withdrawal_request
amount := 50.00
card := 4929 1234 0000 5678

With this in place, we have everything we need to use
standard Quality Center Test Steps to contain interleaved
sequences of actions to be performed automatically across
multiple different application interfaces.

Before we move on to looking at a working
implementation of these concepts, there is one last aspect to
be noted about this automation approach. We’ve taken care to
build a model where each Test Step in Quality Center defines
an automated action to be performed at some interface. It is
equally important that our automation component preserves
this model during execution by creating result steps that
when viewed in Test Lab will mirror the test steps defined in
the Test Plan. As with the other parts, OTA provides access to
all the necessary entities to achieve this.

Putting it all together
The following diagram builds on the concepts

discussed to show our original 4 step multi-interface
example with the automation components in place

The diagram follows the concepts discussed here, but
takes them a stage further in implementation by splitting

continued on page 46

46
May/
June
2013

out the “automation intelligence” into a separate Automation
Server. One of the drawbacks of Quality Center’s custom
test type architecture is that it requires plugins to be installed
on the Quality Center server. At sites with large numbers
of users, this can become a maintenance nightmare when
a plugin update needs to be re-issued to every client in the
organization. Moving the bulk of the automation logic out
of the plugin and into a separate server lowers the frequency
with which the plugin needs to be changed, and also creates a
level of platform independence. The Automation Server is no
longer restricted to only running on Windows platforms.

Another area of refinement that can prove useful is giving
real-time feedback during test execution. Although Quality
Center has no concept of individual test steps in the Run Test
panel, it is possible to feed these back in status text messages
to give the user a clear indication of test progress. Whilst on
the subject of real-time feedback, we should also mention
the importance of returning immediate pass/fail statuses
back to Quality Center as each Test in a run completes. These
form an integrated link between your automation model and
other Quality Center features such as the Dashboard and the
Execution Flow facility within Quality Center. The screenshot
below shows both of these aspects in action together.

Is the effort worth it?
If everything we’ve talked about in this article sounds

like a lot of effort, you’d be partially right – it can be. Which
brings up the question of whether it’s all worth it, or should
we just allow those tests to remain in the too-hard bin, and
leave our manual testers to execute and verify them.

The good news is there are ways to reduce this part of the
modernization effort. HP has an active community of Quality
Center partners, and offer tools that implement the approaches
and practices discussed here, such as Ascert’s own VersaTest
Automation Server Plugin for HP Quality Center. Such plugins
may not actually write your automated tests for you, but they
provide you a framework to get up and running quickly.

Whether you start small with your Smoke Test or Top
50 transactions, or go for a full Business As Usual (BAU)
regression suite from day one, there are a lot of benefits to be
had in return for automating your regularly run test packs:

•	 Automating not just the execution of tests, but

also the far more time consuming and error
prone aspects of validating and recording the
results, even for tests with steps spanning different
interfaces and test tools.

•	 Being cost and time effective to run a complete
regression pack for every change and new release, rather
than relying on a “we don’t think anything else should
have been affected” risk strategy simply because you
can’t manually run all of the tests you’d like.

•	 One single, common definition of your tests, held
entirely within Quality Center, with far less chance
that an external “automation script” can get out of
date with the description held in Quality Center.

•	 Using Quality Center as the primary platform for
definition and execution of automated tests reduces
the number of staff to be trained in other tools.

•	 Subject Matter Experts (SMEs) are typically involved
when changes are first implemented, but have usually
long since moved on when an application reaches
a BAU stage. A properly implemented automation
model lets you capture the testing knowledge from
these SMEs before they leave for other projects, and
ensures that nothing is lost when repeating tests in
months and years ahead.

•	 And last but not least a full, automatically logged,
auditable record-of-fact for every test ever
performed. Not just a vague and disputable list
of pass/fail marks based on a manual inspection
of some no longer available screen or log - but
a complete record of every message field and
interaction down to the finest level of detail that
might be later required as evidence that diligent
testing was performed.

In the end, it comes down to individual organizations to
quantify the monetary value of these benefits. A large user
of BASE24 and NonStop systems is on record as making
savings of £1m year on year after working with Ascert and
its partners to adopt the approaches described here as part
of the user’s application modernization project. The fact
that they also significantly increased their test coverage in
the process would have sent them singing all the way to the
bank – except of course, they are a bank.

Ascert was founded in 1992 as a supplier of advanced
testing software and services for the NonStop platform.
Ascert's native and off-platform solutions allow a widerange
of testing activities for the NonStop from functional through
performance testing, managed directly or via HP Quality
Center as part of an enterprise testing environment.
Solutions built on Ascert's VersaTest technology are used
for testing payments systems throughout the world,. Ascert
is an HP Partner and member of HP Software's Enterprise
Management Alliance Program (EMAP)

The State of Automation
Continued from page 22

